Skip to main content

Constrained Language Models Yield Few-Shot Semantic Parsers

This repository contains tools and instructions for reproducing the experiments in the paper

GitHub Repo License: MIT

Constrained Language Models Yield Few-Shot Semantic Parsers (EMNLP 2021). If you use any source code or data included in this toolkit in your work, please cite the following paper.

@inproceedings{ConstrainedLMSemanticParser2021,
title = "Constrained Language Models Yield Few-Shot Semantic Parsers",
author = "Shin, Richard and Lin, Christopher H. and Thomson, Sam and Chen, Charles and Roy, Subhro and Platanios, Emmanouil Antonios and Pauls, Adam and Klein, Dan and Eisner, Jason and Van Durme, Benjamin",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
year = "2021",
publisher = "Association for Computational Linguistics",
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Acknowledgements

*This work has been funded by grants from the National Science Foundation, including the ICICLE AI Institute (OAC 2112606)